Automated, calibration-free quantification of cortical bone porosity and geometry in postmenopausal osteoporosis from ultrashort echo time MRI and deep learning.


BACKGROUND: Assessment of cortical bone porosity and geometry by imaging in vivo can provide useful information about bone quality that is independent of bone mineral density (BMD). Ultrashort echo time (UTE) MRI techniques of measuring cortical bone porosity and geometry have been extensively validated in preclinical studies and have recently been shown to detect impaired bone quality in vivo in patients with osteoporosis. However, these techniques rely on laborious image segmentation, which is clinically impractical. Additionally, UTE MRI porosity techniques typically require long scan times or external calibration samples and elaborate physics processing, which limit their translatability. To this end, the UTE MRI-derived Suppression Ratio has been proposed as a simple-to-calculate, reference-free biomarker of porosity which can be acquired in clinically feasible acquisition times. PURPOSE: To explore whether a deep learning method can automate cortical bone segmentation and the corresponding analysis of cortical bone imaging biomarkers, and to investigate the Suppression Ratio as a fast, simple, and reference-free biomarker of cortical bone porosity. METHODS: In this retrospective study, a deep learning 2D U-Net was trained to segment the tibial cortex from 48 individual image sets comprised of 46 slices each, corresponding to 2208 training slices. Network performance was validated through an external test dataset comprised of 28 scans from 3 groups: (1) 10 healthy, young participants, (2) 9 postmenopausal, non-osteoporotic women, and (3) 9 postmenopausal, osteoporotic women. The accuracy of automated porosity and geometry quantifications were assessed with the coefficient of determination and the intraclass correlation coefficient (ICC). Furthermore, automated MRI biomarkers were compared between groups and to dual energy X-ray absorptiometry (DXA)- and peripheral quantitative CT (pQCT)-derived BMD. Additionally, the Suppression Ratio was compared to UTE porosity techniques based on calibration samples. RESULTS: The deep learning model provided accurate labeling (Dice score 0.93, intersection-over-union 0.88) and similar results to manual segmentation in quantifying cortical porosity (R(2) >/= 0.97, ICC >/= 0.98) and geometry (R(2) >/= 0.82, ICC >/= 0.75) parameters in vivo. Furthermore, the Suppression Ratio was validated compared to established porosity protocols (R(2) >/= 0.78). Automated parameters detected age- and osteoporosis-related impairments in cortical bone porosity (P </= .002) and geometry (P values ranging from /= 0.88) and DXA (|R| >/= 0.76) in postmenopausal women, confirming that lower mineral density corresponds to greater porosity. CONCLUSION: This study demonstrated feasibility of a simple, automated, and ionizing-radiation-free protocol for quantifying cortical bone porosity and geometry in vivo from UTE MRI and deep learning.

Autor: Jones BC, Wehrli FW, Kamona N, Deshpande RS, Vu BD, Song HK, Lee H, Grewal RK, Chan TJ, Witschey WR, MacLean MT, Josselyn NJ, Iyer SK, Al Mukaddam M, Snyder PJ, Rajapakse CS

Organisation: Department of Radiology, Perelman School of Medicine, University of Pennsylvania, 1 Founders Building, 3400 Spruce St, Philadelphia, PA 19104, United States of America; Department of Bioengineering, School of Engineering and Applied Sciences, Universit

Jahr: 2023

GID: 5944

Erstellt am: 27.03.2023

Das Urteil unserer Kunden: Hervorragend


4,7 von 5 Sternen basierend auf 868 Bewertungen

TÜV zertifiziert

Wir sind vom TÜV zertifizierter Hersteller für Medizinprodukte.

Made in Germany

Die Entwicklung und Herstellung findet nur in Deutschland statt.

Bewährte Qualität

10 Jahre Servicegarantie & mehr als 35 Jahre Erfahrung im Firmenverbund.


Über 2000 wissenschaftliche Publikationen zu unseren Produkten.

Weltweit Tätig

Mit unseren Vertriebspartnern international tätig.

Fangen Sie an zu tippen, um die gesuchten Beiträge zu sehen.